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Abstract:

This paper discuses possibilities of  software 2-D processing of optical cuts provided by
confocal microscope. It introduce new mathematical tools for construction a 2-D image.
Each optical cut  will represent by different colour, namely in case, when data will be  of the
grayscale type. All characteristics would improve  after the cuts composition.  It may be
presumed that similar mathematical tools might also be employed for spatial reconstructions
of these preparations.
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1. Introduction

The display of preparate is realised by a beam of laser rays in the confocal microscope . The
laser beam which is parallel to an objective optical axis comes through the semi-permeable
mirror and it is  refracting to an objective focus. If the focus is situated on the preparation
surface,  the ray is reflected by preparation and it  recurs through object-lens back. Because
this reflected ray goes from an objective focus, it goes through  image space of object-lens
parallel with its optical axes again. It comes on mirror, which reflects it parallel with optical
ocular axes. The ray  is refracted into a pictorial focus. There is a  pin hole in the  focal picture
plane of ocular, which has a chink in focus. The ray goes through the chink and it impacts on
a physical pixel of scanner.

The rays reflected by preparation out of focal plane  can come this way into ocular too, but
cannot be reflected parallel with optical axis after going through objective. Nor they are
reflected by mirror in direction of ocular optical axes. Therefore they can not be refracted into
focus by ocular. On pictorial focal plane they fall out of focus,  they are intercepted by shutter
and they cannot cause defocusing image.  This microscope has the sharpness zone very
narrow and practically it does not display the preparation points, which are situated in set of
unsharpness. Therefore we obtain the optical cut of observe preparation with very small
altitudes.

2. The graphic space, universal co-ordinate system

We work again with two-dimensional reconstructions in this article, but each optical cut  will
represent by different colour, namely in case, when data will be  of the grayscale type. All
characteristics would improve  after the cuts composition. Three-dimensional colour system
RGB belongs to the most used colour systems. Following definitions are connected with



colours and palettes in this system.  Following constructs and their properties can be further
used for three dimensional reconstruction of all sorts of objects.

2.1. Definition: Let )21;iiI = ; )21; jjJ = ; )21;kkK =  be intervals, { }D x mx i i
m= >=0 1;  is

equidistant division of interval I , { }D y ny i i
n= >=0 1; ; is equidistant division of interval J ,

{ }D z sz k k
s= >=0 1;  is equidistant division of interval K . Block

) ) )111,, ;;; +++ ××= kkjjiikji zzyyxxF ; i m= −0 1 1, ,.., , j n= −0 1 1, ,.., , k s= −0 1 1, ,..,  is called a

physical voxel. Numbers iix xxv −= +1 ; jjy yyv −= +1  kkz zzv −= +1  are called dimensions of
physical voxel kjiF ,,  respectively. Block I J K× ×  together with divisions Dx , Dy , Dz  are
called a graphic space, in detailed notation ( )zyx DDDKJI ,,,3 ××= .

Following statements are resulting from this definition:

2.2. Theorem:  Corresponding proportions of all physical voxels  kjiF ,,  of the same graphic
space  3  are equal.

2.3. Theorem: The set
 ) ) ) { } { } { }{ }1,..,0;1,..,0;1,..,0  ;;; 111,,3 −∈−∈−∈××== +++ sknjmizzyyxxF kkjjiikji

 of all physical voxels of graphic space 3

is a decomposition of graphic space .3 .

2.4. Theorem: Let 3  be the graphic
space,  3  the set from theorem 2.3. The
relation ρ defined on 3  by reference

( )[ ]ijkijkijk FBFAFBA ∈∧∈∈∃⇔),ρ( 3

is an equivalence on 3 .

2.5. Definition:  Let 3  be the graphic
space. A factor set ρ= /33 , where ρ is
the equivalence  from previous theorem, is
called physical space of the space 3  . As
resolution of physical space 3   we
understand the resolution relevant to
graphics space 3  .

2.6. Definition:   Let 3  be the graphic
space, 3  its physical space, xv ; yv ; zv  the dimensions of its physical voxels kjiF ,,

respectively.  Further lets

                             for  xvc <  is { } ){ }cxrxxrmkrI kkkkkkc =−∧∈−∈∀∈= +1;:1,...,1,0R

Fig.  1: The graphic space with a vertex
mapping



                             for yvd <  is { } ){ }dysyysnksJ kkkkkkd =−∧∈−∈∀∈= +1;:1,...,1,0R

                             for zve <   is { } ){ }eztyytsktJ kkkkkke =−∧∈−∈∀∈= +1;:1,...,1,0R

and [ ]edcP ,,= . Then the set JJI edcP ××=3LLLL  we call a logical space, its elements  kjiP L ,,

are called logical voxels.

2.7. Theorem: Let 3  be the physical space of the graphic space 3 ,  let 3LLLLP  be any logical
space of the same graphic space and  33 LLLLPP →:ϕ  is a mapping, where for all i m= −0 1 1, ,.., ,

1,...,1,0 −= nj , 1,...,1,0 −= sk   is ( ) kjikjiPkjiPkjiP FLLF ,,,,,,,, ∈⇔=ϕ . Then the mapping ϕP  is a
bijection.

2.8. Definition: The mapping 33 LLLLPP →:ϕ   from previous theorem is called a mapping of
physical space.

2.9. Definition: The mapping 33 LLLLVV →:ϕ , where    [ ]000 ;; zyxV = , is called a vertex

mapping. The mapping 33 LLLLSS →:ϕ , where [ ])();();( 102
1

102
1

102
1 zzyyxxS +++= ,  is called a

center mapping.

In many graphical application it is not  necessary to discriminate between physical and logical
voxels again, in colour spaces allways it is not necessary  to introduce these conception. If we
want to reduce a  number of colours in already existing image, we can use the fact that it is
possible to represent the colour by orderly triad of natural numbers (components R, G, B).
Leat us consider that,  it is possible to define the metric on the set of these triads  (e.g .
Euclidean). The chromatic set  is orderly, but the metric space too. The colour, that we can not
use for  some  reason, is possible to replace it by the  nearest colour, in sense of used metric.
Mapping of colour space enables to carry out all sorts of operation in these spaces, e.g. cuts or
selection of pallets in such a way, how it is described further. In cases, we need to use
"smooth connection" between single colours (and it is a case of these papers),  these
constructs are  necessary too.

2.10. Definition: Let 3  is the physical space,  kjiF ,,  its physical voxel. The ordered triad
[ ]kji ,,  is caled the co-ordinate of physical voxel  kjiF ,, .

2.11. Definition: Let 3LLLL  is a logical space of the physical space 3 . Lets us sign
( )0;0;1 xv=e ; ( )0;;02 yv=e ; ( )zv;0;03 =e ; 000LS = . Then ordered pentad 3213 ;;;; eeeSLLLL  is

called the universal co-ordinate system of the logical space 3LLLL  .

2.12. Definition: Let 3LLLL  be the logical space, 3213 ;;;; eeeSLLLL  its universal co-ordinate
system.  Furher let 3  be the physical space, for which exists the inverse mapping

33 LLLL→:ϕ 1− . The system 3213 ;;;; eeeSLLLL  is called universal co-ordinate system of logical

space 3LLLL  which is induced by mapping ϕ . We denote  it ϕ3213 ;;;; eeeSLLLL .



3. Palets and colour multifocal image

Image O   can bee defined as the mapping  rCO →2:  of scanner plane 2   into so-called
chromatic set  rC :

3.1. Definition: Let 2  be a physical plane and { }1;0; ><≤∈= rrcNcCr . A mapping

rCO →2:  is called a picture matrix or a short picture. The set rC  is called an r -chromatic
set. If  ,: i jO F c→ ,  the number c  is called the value or colour of ,i jF . Under the resolution of
the picture we understand the resolution of the incident physical plane.

Multifocal image  can bee defined as a sequence of images:
3.2. Definition:  The sequence { } nkOk ,..,1;)( =  of the images is called a multi-focal image
(or, more precisely, an n - focal image).

The multifocal image  { } nkOk ,..,1;)( =  which is  acquired of  a confocal microscope, can
consist as far as of  several tens images. If the input data are saved as Gray Scale,  the
chromatic set consists from  256  gray tone ( )256=r .  If they are True Color, then   3256=r .
In case, that data type is grayscale, it is  acceptable  to colour data with suitable colours. After
the composition all sorts of characteristics excel better. The RGB  system belongs to the most
used colour systems. Following definitions  describe the colours and pallets in this system.

3.3. Definition: The chromatic set rC , for which is 1; >= zzr n , is called n -chromatic set.
Specially for 3=n  we have a trichromatic set. The number z  we call a basis of the chromatic
set.

3.4. Theorem: Let rC  be a chromatic set of trichromatic system with the basis z ,
c c c c zi0 1 2 0 1 1; ; ; , ,...,= − . Then there exists  a bijection 3

zr CC →:β  such that for all rCc∈  it

is ( )β(c c c c) ; ;= ⇔0 1 2  c c z c z c z= + +0
0

1
1

2
2 . On the set 3

zC  there exists an ordering

( ) ( )c c c d d d0 1 2 0 1 2; ; ; ;< ⇔  2
2

1
1

0
0

2
2

1
1

0
0 zdzdzdzczczc ++<++ .

3.5. Definition: The set 3
zC  from previous theorem is called trichromatic system.

The theorem 3.2. makes possible to construct physical space 3   over the trichromatic system,
where coordinates of physical voxel are given by orderly triad  ( )210 ;;)( cccc =β .  We use this
space for the construction of palettes. Assume that the first component of sequenced triad of
trichromatic system determines  red quantity, the second green quantity and the third the blue
quantity of colours for mixing the required hue.  Then we get system RGB , which every hue
is identified by orderly triad ( )BGR ;; .

3.6. Definion: Let rC   be r -chromatic set, let rCP ⊆  be its least two elements subset, let<P
be the ordering of the set P . Then the set P  is called a palette selected from r -chromatic set

rC .



3.7. Definition:  Let 3  be the physical chromatic space, let kjiF ,, , nmlF ,,  be physical voxels

and let kjiF ,, , nmlF ,,  be its closings. The voxel nmlF ,,  is called the neighbour of voxel kjiF ,,

just then, when ∅≠∩ kjinml FF ,,,, .

3.8. Definition: Let Nr  be chromatic set of trichromatic system, let 3  be physical space of
this system and P Nr⊆  is a palette selected from this system. Let there further exist two
physical voxels kjiF ,, , nmlF ,,  in the palette at most, they have exactly one different neighbour
from themself (so called initial resp. ending voxel of the palette). Other voxels have at least
two neighbours different from themself. Then the palette P  is called a smooth palette.

For construction of the smooth palettes we can use the parametric defined connected curves
3⊂α  , namely by following way: Let   3  be the physical chromaticc space, ( )S; ; ;e e e1 2 3

its universal co-ordinate system induced by random mapping. In this co-ordinate system there
is definied continuous curve by parametric equations x t= ϕ( ) ; y t= ψ( ) ; z t= τ( ) ; t t t∈ 1 2; .
Lets denote  [ ]A t t t1 1 1 1= ϕ ψ τ( ); ( ); ( ) 3∈ , [ ]A t t t2 2 2 2= ϕ ψ τ( ); ( ); ( ) 3∈ . Let )1(F   be the
physical voxel, for which it is  )1(

1 FA ∈ . )2(F  is the  physical voxel, for which it is )2(
2 FA ∈ .

Then the construction of the smooth palette  consists of  recursive halving of interval  t t1 2; .

4. The composition of a focused image from transparent optical cuts

For the composition of a focused image, some operations can be used, known from image
processing. According to the previous description of the confocal microscope, we could say,
that for composition of the sharp picture it is enough to sumarise pixels values  of separate
components of multifocal picture. According to the previous principle for every physical pixel
it should exist at most one image Ok )( , for that is  ( ) 0)( >ij

k FO , in other words the intersection
of particular optical cuts should be empty. However, practically in reality, it is complicated,
because there are two optical cuts of the same preparation with non empty intersection. This
fact can have two causes:

1. Even the height of sharpness zone of confocal microscope is minimal, it is not nought. The
same point of preparation can then be focalizated in two cuts.

2. Scanned preparation is transparent, e.g. there is a luminous ray at its separate layers, which
is partial repulsed and which partial goes through preparation, so that the preparation can be
repulsed by other layers.

If we consider the object as transparent, there is a colour mixture of the light in repulse at
diferent layers of preparation. This fact can be considered by weighing of separate component
in the definition of  generalization  relevant image operations
I generalize the operation with images for any number of components and add their
weighting. In the following section, { };)( Ok=OOOO nk ;...;1=   is  the multifocal image in system
RGB . I define:



4.1. Definition: Compression weighted sum of images as an image, for which chromatic
components is

1for    2,1,0;,
)1(

, === nmcc jijim ,
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(this operation makes possible to model transparency preparation),

4.2. Definition: Compression weighted product of images as an image, for which chromatic
components is
                   1for    2,1,0;,
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(this operation displays thin  layers of preparation),

4.3. Definition: Compression weighted inverse product   of images as an image, for which
chromatic components is
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(this operation displays thick  layers of preparation),

4.4. Definition: disjunction of images as an image, for which chromatic components are
                1for     2,1,0;,

)1(
, === nmcc jijim ,

         


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
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(this operation builds up most contrasty image)

5. Results

The results reflect, that  it is possible to obtain images which are appropriate for all sorts of
purposes by using above-cited operation.

Meaning of palettes is demonstred on fig. 2  - protozoon from genus Paramethyum. There are
fluent palette determination by Lissajouss curve
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on fig. 2



Frequences of used goniometrical functions
are quite high, which results in very intense
change of colours in a palette. Thereby it can
excel a small change of image’s details. On the
other side it is not possible to presume   pixels
height from colours‘ pixel, because it is not
sure, that colour is identified with explicit
altitudes.
The choice of transparency can mainly
influence the image of observed object and its
approximation to reality when the operation
compression sum is used. The preparation is
displayed by using the same  operations and
the same transparency on fig 3.,  both images
differ by used transparency only. The object
on the left is non-transparent,  the same object
is displayed on the right, in the way how it
would look, if it had been transparent from
80%

Fig. 4. demonstrates the use of compression
product. It  is evident from the definition’s
formula of this operation, that the value of

processed pixel  declines by every multiplication. If more images Ok )(  have nonzero  value  in
the given physical pixel jiF ,  (it is in case, that thick layer of the preparation is situated here),
the value of product in this pixel falls into the predetermined limit.  If we in this case colour
the pixel by the background colour, as result we would get  the image, that contains only thin
preparation layers   and would not contain thick layers. The thickness  of displayed layers

Fig.2: Details highlighting by high
frequency palette

Fig.  3: Modelling preparation transparency by compression sum



depends on selected  parameter p . In fig. 4. on the left we see the thin layers, which are
displayed by compression product for 15.0=p .

Fig. 4. on the right demonstrates the use of inverse product. From the definition expresion of
this operation it is  again evident, that the value of processed pixel grows by every division. If
a small number of images Ok )(  has nonzero value in given physical  pixel jiF ,     (such in the
case, that thin layer preparation is situated here), the value of inverse product would stay
down over the predetermined limit. If we colour the pixel by background colour in this case,
as result we would get  the image, which would not contain only thick layers of preparation
and does not contain thin layers. Volume of displayed layers depends on selectiton of
parameter p  again.

It may be presumed that similar mathematical tools might also be employed for spatial
reconstructions of these preparations.
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Fig.  4: Displaying of the thin and thick layers  by  product and  inverse product
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